Statistical inference for panel data semiparametric partially linear regression models with heteroscedastic errors

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient semiparametric estimator for heteroscedastic partially linear models

We study the heteroscedastic partially linear model with an unspecified partial baseline component and a nonparametric variance function. An interesting finding is that the performance of a naive weighted version of the existing estimator could deteriorate when the smooth baseline component is badly estimated. To avoid this, we propose a family of consistent estimators and investigate their asy...

متن کامل

Statistical Inference for Semiparametric Varying-coefficient Partially Linear Models with Error-prone Linear Covariates

We study semiparametric varying-coefficient partially linear models when some linear covariates are not observed, but ancillary variables are available. Semiparametric profile least-square based estimation procedures are developed for parametric and nonparametric components after we calibrate the error-prone covariates. Asymptotic properties of the proposed estimators are established. We also p...

متن کامل

Semiparametric efficiency for partially linear single-index regression models

We calculate semiparametric efficiency bounds for a partially linear single-index model using a simple method developed by [1]. We show that this model can be used to evaluate the efficiency of several existing estimators.

متن کامل

Spatial Correlation Testing for Errors in Panel Data Regression Model

To investigate the spatial error correlation in panel regression models, various statistical hypothesizes and testings have been proposed. This paper, within introduction to spatial panel data regression model, existence of spatial error correlation and random effects is investigated by a joint Lagrange Multiplier test, which simultaneously tests their existence. For this purpose, joint Lagrang...

متن کامل

Bias-corrected statistical inference for partially linear varying coefficient errors-in-variables models with restricted condition

In this paper, we consider the statistical inference for the partially liner varying coefficient model with measurement error in the nonparametric part when some prior information about the parametric part is available. The prior information is expressed in the form of exact linear restrictions. Two types of local bias-corrected restricted profile least squares estimators of the parametric comp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Multivariate Analysis

سال: 2010

ISSN: 0047-259X

DOI: 10.1016/j.jmva.2010.01.003